SARデータの振幅・位相 情報の利用と課題

岐阜大学 工学部 電気電子·情報工学科 木村 宏

- ・建物地の偏波オリエンテーション
- ・偏波SAR校正への利用、Faraday回転角の推定
- ▶干涉SAR(InSAR)-位相
 - ・南極InSARにおける電離層の影響
 - ・電離層の影響の補正

>SARトモグラフィ(TomoSAR) - 振幅と位相

- ・マルチ基線データの利用
- ・映像化の多次元化、3次元→4次元→5次元
- ・位相補正への大気の影響

建物地のPO

・ 斜面の偏波オリエンテーション

$$\tan \theta = \frac{-\tan \omega}{-\tan \gamma \cos \phi + \sin \phi}$$

 ω : azimuth slope angle, γ : ground range

slope angle,

 ϕ : radar look

・壁面Aによる偏波オリエンテーション $\omega \rightarrow \alpha, \gamma = 0, \phi \rightarrow \pi/2 - \phi.$

$$\tan \theta = \frac{-\tan \alpha}{\cos \phi}$$

α:壁のアジマス方向からの方位角(壁方位角)

angle. 2013/8/22

Pi-SARデータによる建物地のPO(1)

≻偏波SARデータのPO

J.S. Lee, et al., "On the estimation of radar polarization orientation shifts induced by terrain slopes," IEEE TGRS, 40, 1, 30-41, 2002.

 $\theta = \arg\left(-\left\langle O_{rr}O_{ll}^{*}\right\rangle\right)/4$

H. Kimura, "Radar polarization orientation shifts in built-up areas," *IEEE GRSL*, 5, 2, 217-221, 2008. 2013/8/22 京都大学防災研究所特定研究集会「SARが切り拓く地球人間圏科学の新展開」

Pi-SARデータによる建物地のPO(2)

建物地のPOと壁方位角の関係

モデル式との相関 L >> X

H. Kimura, "Radar polarization orientation shifts in built-up areas," IEEE GRSL, 5, 2, 217-221, 2008.

POを利用した衛星SARの偏波校正(1)

- >観測後方散乱行列(校正前) 0 = RFSFT + N
 - $= \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} \begin{bmatrix} \cos \Omega & \sin \Omega \\ -\sin \Omega & \cos \Omega \end{bmatrix} \begin{bmatrix} S_{hh} & S_{hv} \\ S_{vh} & S_{vv} \end{bmatrix} \begin{bmatrix} \cos \Omega & \sin \Omega \\ -\sin \Omega & \cos \Omega \end{bmatrix} \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} + \begin{bmatrix} n_{hh} & n_{hv} \\ n_{vh} & n_{vv} \end{bmatrix}$
 - O: 観測後方散乱行列
 - R:受信系歪行列
 - F:片道Faraday回転行列
 - S:ターゲットの後方散乱行列
 - T:送信系歪行列
 - N: 雜音行列

>レーダシステム(T,R)校正+Faraday回転(F)補正後

モノスタティック

$$\hat{O}_{hv} = \hat{O}_{vh}$$
 $\hat{O}_{rr} = (\hat{O}_{hh} - \hat{O}_{vv} + j2\hat{O}_{xv})/2$
 $\hat{O}_{ll} = (\hat{O}_{vv} - \hat{O}_{hh} + j2\hat{O}_{xv})/2$
 $\hat{O}_{ll} = (\hat{O}_{vv} - \hat{O}_{hh} + j2\hat{O}_{xv})/2$
 $\hat{O}_{vv} = \hat{O}_{hv}$ or \hat{O}_{vh}

▶観測後方散乱行列(レーダシステム校正後)

Z = O_{cal} = FSF + N Faraday 回転の影響は残る

偏波SAR データの 利用

 $= \begin{bmatrix} \cos \Omega & \sin \Omega \\ -\sin \Omega & \cos \Omega \end{bmatrix} \begin{bmatrix} S_{hh} & S_{hv} \\ S_{vh} & S_{vv} \end{bmatrix} \begin{bmatrix} \cos \Omega & \sin \Omega \\ -\sin \Omega & \cos \Omega \end{bmatrix} + \begin{bmatrix} n_{hh} & n_{hv} \\ n_{vh} & n_{vv} \end{bmatrix}$ > Faraday **D EA**

 $\Omega = KN_f \overline{B\cos\psi\sec\theta_0} / f^2 \quad \text{[radians]}$

K: 定数(2.365×10⁴), *N_f*: TEC (TECU), *B*: 磁束密度(Telsa), *f*: 周波数, ψ: 波面法線と地磁界のなす角, θ₀: 波面法線と衛星直下のなす角

≻偏波SARデータからのFaraday回転角推定

$$\begin{bmatrix} Z_{rr} & Z_{rl} \\ Z_{lr} & Z_{ll} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & j \\ j & 1 \end{bmatrix} \begin{bmatrix} Z_{hh} & Z_{hv} \\ Z_{vh} & Z_{vv} \end{bmatrix} \begin{bmatrix} 1 & j \\ j & 1 \end{bmatrix}$$
$$\Omega = -\frac{1}{4} \arg \left(Z_{rl} Z_{lr}^* \right)$$
 ロバストな方法とされる

S. H. Bickel, and B.H.T. Bates, "Effects of magneto-ionic propagation on the polarization scattering matrix," *Proceedings IRE*, 53, 8, 1089-1091, 1965.

変動位相

▶季節変動? その他(電離層)の影響?

K: 屈折定数(40.28 m³/s²)

f: 周波数

θ:オフナディア角

TEC: 鉛直方向総電子量

>位相シフト
$$\Delta \phi \approx -\frac{4\pi K \sec \theta \cdot TEC}{cf}$$

PALSARインターフェログラムへの影響

>TECの差 $\Delta TEC = TEC_{slave} - TEC_{master}$

 $\Delta R \approx \frac{K \sec \theta \cdot \Delta TEC}{f^2}$ >レンジ方向位置ずれ $\Delta TEC = 1 \text{ TECU} (10^6 \text{ electrons/m}^2) \rightarrow \Delta R = 0.3 \text{ m}$ $\Delta \varphi \approx -\frac{4\pi K \sec\theta \cdot \Delta TEC}{cf}$ ▶干渉位相ずれ $\Delta TEC = 1$ TECU $\rightarrow \Delta \varphi = -17$ radians (-2.7 cycles) **>アジマス方向位置ずれ** $\Delta A \approx -\frac{2K}{cf} \sec \theta \cdot \frac{\partial \Delta TEC}{\partial t} \cdot \frac{v_{sat}}{\alpha}$

 $\partial \Delta TEC / \partial t = 1 \text{ TECU/s} \rightarrow \Delta A = 36 \text{ m}$

>∂∆TEC/∂t≠0の場合、見かけのアジマス変位発生

 $\Delta A \approx -\frac{2K}{cf} \sec \theta \cdot \frac{\partial \Delta TEC}{\partial t} \cdot \frac{v_{sat}}{\alpha} \qquad \varphi_{MAI} = \varphi_f - \varphi_b = -\frac{2\pi}{L} \Delta A$ > 前方と後方ルックの \Delta TEC 差で干渉位相発生

形都大学防災研究所特定研究集会「SARが切り拓く地球人間圏科学の新展開」

2013/8/22

冬季との差分位相

形象都大学防災研究所特定研究集会「SARが切り拓く地球人間圏科学の新展開」

地

InSARの電離層補正に向けて(1)
アジマス方向位置ずれ(振幅画像)の利用

$$\Delta A \approx -\frac{2K}{cf} \sec \theta \cdot \frac{\partial \Delta TEC}{\partial t} \cdot \frac{v_{sat}}{\alpha}$$

 $\Rightarrow \qquad \Delta \varphi_{cor}(t) \approx -2\pi \frac{\alpha}{v_{sat}} \cdot \int_{0}^{t} \Delta A dt + \Delta \varphi_{cor}(t=0)$
 $\Delta \varphi_{cor}(t=0) = -\frac{4\pi K \sec \theta}{cf} \Delta TEC(t=0)$
• PALSAR SLCのアジマス画素間隔: 3m→0.08 TECU/s
決課題

- ・サブ画素単位での高精度位置ずれ計測が必要
- ・アジマス方向積分による誤差累積への対応が必要
- ・初期値△TEC(t=0)を別途推定する必要あり
- ・画像全域の高密度計測で計算量増大

InSARの電離層補正に向けて(2)

≻MAI位相の利用

$$\varphi_{MAI} = \phi_f - \phi_b \approx -\frac{4\pi K \sec\theta}{cf} \left(\Delta TEC_f - \Delta TEC_b \right)$$

 $= -\frac{4\pi K \sec\theta}{cf} \frac{\partial \Delta TEC}{\partial t} \frac{\lambda r}{2Lv_{sat}}$

$$\Rightarrow \qquad \Delta \varphi_{COR}(t) \approx -\frac{2Lv_{sat}}{\lambda r} \cdot \int_{0}^{t} (\varphi_{f} - \varphi_{b}) dt + \Delta \varphi_{COR}(t = 0)$$

・アジマス方向積分前の位相アンラッピング

≻課題

- ・位相保持のために高品質の画像重ね合わせが必要
- ・アジマス方向積分による誤差累積への対応が必要
- ・初期値△TEC(t=0)を別途推定する必要あり

SARトモグラフィ(TomoSAR)

▶ Reigber and Moreira(2000)による論文が最初

A. Reigber, A. Moreira, "First demonstration of airborne SAR tomography using multibaseline L-band data," *IEEE TGRS*, 38, 5, pp.2142-2152, 2000.

▶トモグラフィ レンジとアジマスに直交するエレベーション方向の散乱分布 →レンジーエレベーション断面構造 →3次元映像化 ▶マルチ基線データ(振幅と位相) B_{\perp} ≻近年の発展 ・4次元映像化(差分TomoSARによる r 3次元+速度等) •超分解能 ground surface

・5次元への発展(4次元+熱膨張等)

SARトモグラフィの原理(1)

≻SARがx軸(エレベーション(s)軸に平行)に並ぶ場合

・SAR信号

$$g(x) = \int_{s_1}^{s_2} \gamma(s) \exp\left(-j\frac{4\pi r}{\lambda}\right) ds$$

$$\approx \int_{s_1}^{s_2} \gamma(s) \exp\left[-j\frac{4\pi}{\lambda}\left(r_0 + \frac{x^2}{2r_0} - \frac{sx}{r_0}\right)\right] ds$$

$$\gamma(s): s 軸上の反射係数$$

•補正位相

$$\xi(x) = \exp\left[j\frac{4\pi}{\lambda}\left(r_0 + \frac{x^2}{2r_0}\right)\right]$$

•位相補正後SAR信号

$$q(x) = g(x)\xi(x) \approx \int_{s_1}^{s_2} \gamma(s) \exp\left(j\frac{4\pi}{\lambda}\frac{sx}{r_0}\right) ds$$

⇒ q(x)のフーリエ変換でγ(s)が得られる

 \otimes

▶現実はSARがx軸上を等間隔並ばない ・x軸上に配置させる位相補正

$$q(x) = g(x) \cdot \zeta(x), \ x = B_{\perp}$$
$$\zeta(x) = \exp\left[j4\pi\left(r_0 + \frac{B_{\perp}^2}{2r_0} + \frac{B_{//}}{\lambda}\right)\right]$$

・等間隔データの生成(内挿)

▶トモグラフィ性能

•s軸分解能 $\rho_s = \frac{\lambda r_0}{2L}$ L:エレベーション開口長

TomoSARアルゴリズムの比較

方法	短所	長所
フーリエ変換	データの等間隔化への内挿	原理の基本
Beam Forming	高サイドローブレベル 非超解像	不等間隔データに対応
Singular Value Decomposition	非超解像	不等間隔データに対応
Capon	散乱体数の事前情報 マルチルックによる分解能低下	超解像 サイドローブ抑制
MUSIC (Multiple Signal Classification)	散乱体数の事前情報 散乱体位置のみを特定 マルチルックによる分解能低下	超解像 サイドローブ抑制
Compressive Sensing	少数散乱体が前提	少数データに対応 超解像

PALSARによるTomoSARの試み

>岐阜地域のデータ(2007年1月~2011年3月)

Mode	FBS(12)	FBD(16)	FBS+FBD(28)
平均 Δx [m] $(\overline{\Delta} x)$	427	314	193
最大 $\Delta x [m] (\Delta_{max} x)$	1,643	1,383	703

PALSAR FBS(HH)

岐阜大学 キャンパス 850m四方

2013/8/22

PALSAR PLR

青: 1回反射 赤: 2回反射 マゼンタ: 1回+2回

反射

2013/8/22

岐阜大学

$\succ \gamma(s) = \delta(0) + 2\delta(s - 64 \text{ m})$ REF: 5.3 km開口長, $\Delta x = 50 \text{ m}$

性能シミュレーション(1)

2013/8/22

適用への課題

> 基線間隔条件

- ・隣接する2データ間での位相変化< π ラジアン $\Delta x < \left| \frac{\Lambda r_0}{4s_0} \right|$
- •s₀=64 mの散乱体場合、∆x<800 m
- ・多くの文献は、平均基線間隔で規定?

>正確な位相補正の必要性

- ・軌道情報からの基線の精度(B_とB_//)
- $B_{//}$ には(波長/20)の精度が必要 $\zeta(x) = \exp\left[j4\pi\left(r_0 + \frac{B_{\perp}^2}{2r_0} + \frac{B_{//}}{\lambda}\right)\right] \approx \exp(j4\pi r_s)$
- ・大気遅延の影響の方がより大きく、 かつその程度はデータ毎に変化
- ・表面散乱のみの地表を基準に補正

- ≻振幅・位相情報利用における大気の影響
 >偏波SAR
 - ・電離層伝搬時のFaraday回転(→TEC)
 - ・偏波SAR自身のデータから補正可能
- ≻南極干涉SAR
 - ・電離層(TEC)の局所的影響
 - ・単偏波SARでは、データだけからの補正は困難?

▶トモグラフィックSAR

- ・大気遅延の位相補正が必要(精度<波長/20)
- ・表面散乱だけの地表を利用した位相補正

使用したPALSARデータは、JAXAとのALOS共同研 究および千葉大学CeRESとの共同利用研究のなか でご提供を頂いた。ここに感謝します。

漷