(解析手法研究)

SAR偏波利用の可能性と 電波科学の挑戦

東北大学 東北アジア研究センター 佐藤 源之

sato@cneas.tohoku.ac.jp

SARが切り拓く地球人間圏科学の新展開へ向けて 2013年8月22日 京都大学

ポーラリメトリック・リモートセンシング

- Synthetic Aperture Radar (SAR)
 Day and night, all-weather
- Polarimetric SAR (**PolSAR**)
 - Full polarimetric information
- Polarimetric SAR Interferometry (<u>PolInSAR</u>)
- Ground-based

– Airborne

- Spaceborne

Satellite constellation

レーダー・ポーラリメトリ

> Electromagnetic Wave Polarization

- Trajectory of the wave as time progresses
- Descriptors

Electromagnetic Scattering Polarization

- Transform the incident into the scattered wave
- Modulated with target information...
- <u>Scattering matrix</u>

$$\underline{E}_{S} = \frac{e^{-jkr}}{r} S\underline{E}_{I} = \frac{e^{-jkr}}{r} \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \underline{E}_{I}$$

Polarimetric Observations

電磁波伝搬と偏波・位相情報

電離層 (ファラデー回転) 対流圏

観測値からのモデル構築 SARデータからの物理量推定

Comparison _ Pi-SAR Data ROI

> Oriented Built-up Areas

Optical image

Yamaguchi decomposition

without deorientation

Yamaguchi decomposition with deorientation

Proposed decomposition without deorientation

> Quantitative Comparison

Study Area_ Ishinomaki City

ALOS Optical Images

Washed Away Ratio	Patch Number
80-100%	1
50-80%	2, 3
20-50%	4, 5, 6
0%	7, 8, 9

Before-tsunami 2010-08-23

After-tsunami 2011-04-10

Basic Scattering Mechanisms

Scattering Mechanism Analysis _ Built-up Area

> Polarimetric Scattering Mechanism Change

> Polarization Orientation (PO) Angle Shift

Polarization Orientation Angle Map

Washed Away Ratio	Patch Number
80-100%	1
50-80%	2, 3
20-50%	4, 5, 6
0%	7, 8, 9

PO (Polarization Orientation) Angle

PO Angle Histograms

ALOS/PALSAR_ Model-based Decomposition

Temporal Baseline:

138 days

Spatial Baseline: about 2 kilometers

Resolution: about 20 × 20 meters

Building Block Scale

Washed Away Ratio	Patch Number
80-100%	1
50-80%	2, 3
20-50%	4, 5, 6
0%	7, 8, 9

Decomposition Comparison _ Built-up patch

SARデータの解析手法

コヒーレンシー (散乱の空間分布)

・ 偏波 ・ (固有値解析は空間分布情報が主)

現在の偏波情報利用

- 地表面分類
 固有値解析
 モデル分解
- Pol-IN-SAR
 樹高推定

その次?

🛦 DNDARCONNETROCACAU 🔬

3-Dimensional Forest Height Representation

E-SAR / Test Site: Oberpfafenhoffen

逆問題としてのSAR

- y: 観測量 x: 物理量 K:物理法則
 - Kx = y 順問題

$$x = K^{-1}y$$
 逆問題

$$K^{-1}$$
が求まる例は少ない。
SARプロセッシングはその例の一つ

 $\boldsymbol{E}_{sca}(r) = \int dr' \overline{G}(r,r',\varepsilon_b) \cdot \overline{G}(r',r'',\varepsilon_b) \cdot \boldsymbol{a}(r'') \Big[k^2(r') - k_b^2 \Big]$

Figure 9.1.1 An example of an inverse scattering experiment.

物体からの電磁波散乱

限られた観測しかできない
 ->逆問題における「不適切問題」

$$\underline{\boldsymbol{E}}_{S} = \frac{e^{-jkr}}{r} S \underline{\boldsymbol{E}}_{I} = \frac{e^{-jkr}}{r} \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \underline{\boldsymbol{E}}_{I}$$

限られた観測での逆問題

未知数を限定することによる「不適切問題」の解消

- 一層の散乱面を仮定し、位相変化と地表面変位
- 樹木の2層構造モデル化による樹高推定
- 有限個数の散乱モデルを仮定した地表面分類

より効率の良い推定

- 本質的な電磁波散乱特性の利用
 フーリエ変換に依らない像の再構成
 - MEM,CS • •

GPR Test Facility for Humanitarian Demining

GB-SAR image of rice field

HH-component of GB-SAR

3D radar monitoring of a tree

- Horn antennas
- Center frequency at 17.2 GHz (Ku-b)
- 150 MHz frequency bandwidth
- Scans 2 m in 2 min.
- Data acquisition at every 5 mm
- Real time SAR processing
- Detection of small displacements by radar interferometry (repeat-pass)

宮城県 栗原市 荒砥沢

- 2008年岩手・宮城内陸地震で発生した大規模地滑り
- 計測範囲 高さ100m, 幅 900 m
- 斜面の安定性モニタリング
- 2011年11月から試験、2102年6月より長期モニタリング
- 高品位ビデオカメラと併用

2012年6月7日 – 2013年2月25日 (13時間毎)

まとめ

- ポーラリメトリ・インターフェロメトリによる定量計測
 - 対象物形状:災害
 - 土壤水分
 - 植生
 - 層構造の解析:樹冠、雪、氷、土壌
- 地表同期実験
 - GB-SAR
 - GPR
- 電波科学
 - 大規模なデータに対応する実用的なアルゴリズム
- SAR学術コミュニティーの形成

CENTER FOR NORTHEAST ASIAN STUDIES